Draft notes for a scalable training + serving stack. Replace the placeholder diagram with your own visual.

Iterabledataset with worker-local RNG seeds.data_wait_time.import triton
import triton.language as tl
@triton.jit
def fused_bias_gelu(X_ptr, B_ptr, Out_ptr, n_elements, BLOCK: tl.constexpr):
pid = tl.program_id(axis=0)
offsets = pid * BLOCK + tl.arange(0, BLOCK)
mask = offsets < n_elements
x = tl.load(X_ptr + offsets, mask=mask, other=0.0)
b = tl.load(B_ptr + offsets, mask=mask, other=0.0)
y = x + b
# fast approximate GELU
y = 0.5 * y * (1.0 + tl.tanh(0.79788456 * (y + 0.044715 * tl.pow(y, 3))))
tl.store(Out_ptr + offsets, y, mask=mask)
no_sync windows).configs/: parallel/optimizer/data configs.data/: dataloader, streaming reader, packing.model/: modules, parallel wrappers, init.kernels/: Triton/fused CUDA kernels + tests.engine/: train loop, scheduler, checkpoint.logging/: metrics, structured loggers, exporters.serving/: vLLM-style engine, paged cache, router.