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Figure 1. Tracking 2D pixels in 3D space. To estimate 2D motion under the occlusion and complex 3D motion, we lift 2D pixels into
3D and perform tracking in the 3D space. Two cases of the estimated 3D and 2D trajectories of a waving butterfly (top) and a group of
swimming dolphins (bottom) are illustrated.

Abstract

Recovering dense and long-range pixel motion in videos
is a challenging problem. Part of the difficulty arises
from the 3D-to-2D projection process, leading to occlusions
and discontinuities in the 2D motion domain. While 2D
motion can be intricate, we posit that the underlying 3D
motion can often be simple and low-dimensional. In this
work, we propose to estimate point trajectories in 3D space
to mitigate the issues caused by image projection. Our
method, named SpatialTracker, lifts 2D pixels to 3D using
monocular depth estimators, represents the 3D content of
each frame efficiently using a triplane representation, and
performs iterative updates using a transformer to estimate
3D trajectories. Tracking in 3D allows us to leverage as-
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rigid-as-possible (ARAP) constraints while simultaneously
learning a rigidity embedding that clusters pixels into
different rigid parts. Extensive evaluation shows that our
approach achieves state-of-the-art tracking performance
both qualitatively and quantitatively, particularly in chal-
lenging scenarios such as out-of-plane rotation. And our
project page is available at https://henry123-boy.
github.io/SpaTracker/.

1. Introduction

Motion estimation has historically been approached through
two main paradigms: feature tracking [37, 38, 58, 64] and
optical flow [1, 19, 62]. While each type of method enables
numerous applications, neither of them fully captures the
motion in a video: optical flow only produces motion for
adjacent frames, whereas feature tracking only tracks sparse
pixels.

An ideal solution would involve the ability to estimate
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both dense and long-range pixel trajectories in a video
sequence [55, 56]. Seminal work like Particle Video [56]
has bridged the gap by representing video motion using a
set of semi-dense and long-range particles. More recently,
several efforts [11, 12, 17, 29] have revisited this problem,
formulating it as tracking any point and addressing it
through supervised learning frameworks. While trained
solely on synthetic datasets [14, 81], these methods con-
sistently demonstrate strong generalization abilities to real-
world videos, pushing the boundaries of long-range pixel
tracking through occlusions.

While great progress has been achieved, current solu-
tions still struggle in challenging scenarios, particularly in
cases of complex deformation accompanied by frequent
self-occlusions. We argue that one potential cause for this
difficulty stems from tracking only in the 2D image space,
thereby disregarding the inherent 3D nature of motion. As
motion takes place in 3D space, certain properties can
only be adequately expressed through 3D representations.
For example, rotation can be succinctly explained by three
parameters in 3D, and occlusion can be simply expressed
with z-buffering, but they are much more complicated
to express within a 2D representation. In addition, the
key component of these methods — using 2D feature
correlation to predict motion updates — can be insufficient.
Image projection can bring spatially distant regions into
proximity within the 2D space, which can cause the local
2D neighborhood for correlation to potentially contain
irrelevant context (especially near occlusion boundaries),
thereby leading to difficulties in reasoning.

To tackle these challenges, we propose to leverage
geometric priors from state-of-the-art monocular depth esti-
mators [2] to lift 2D pixels into 3D, and perform tracking in
the 3D space. This involves conducting feature correlation
in 3D, which provides more meaningful 3D context for
tracking especially in cases of complex motion. Tracking in
3D also allows for enforcing 3D motion priors [52, 63] such
as ARAP constraint. Encouraging the model to learn which
points move rigidly together can help track ambiguous or
occluded pixels, as their motion can then be inferred using
neighboring unambiguous and visible regions within the
same rigid group.

Specifically, we propose to represent the 3D scene of
each frame with triplane feature maps [10], which are
obtained by first lifting image features to 3D featured
point clouds and then splatting them onto three orthogonal
planes. The triplane representation is compact and regular,
suitable for our learning framework. Moreover, it covers
the 3D space densely, enabling us to extract the feature
vectors of any 3D point for tracking. We then compute
3D trajectories for query pixels through iterative updates
predicted by a transformer using features from our triplane
representation. To regularize the estimated 3D trajectories

with 3D motion prior, our model additionally predicts a
rigidity embedding for each trajectory, which allows us to
softly group pixels exhibiting the same rigid body motion
and enforce an ARAP regularization for each rigid cluster.
We demonstrate that the rigidity embedding can be learned
self-supervisedly and produce reasonable segmentation of
different rigid parts.

Our model achieves state-of-the-art performance on var-
ious public tracking benchmarks including TAP-Vid [11],
BADJA [4] and PointOdyssey [81]. Qualitative results on
challenging Internet videos also demonstrate the superior
capability of our model to handle fast complex motion and
extended occlusion.

2. Related Work
Optical flow. Optical flow is the task of estimating dense
2D pixel-level motion between a pair of frames. While
traditional methods [1, 6, 8, 19, 74, 78] formulate it as an en-
ergy minimization problem, recent approaches [13, 23, 24,
61, 76] have demonstrated the ability to predict optical flow
directly using deep neural networks. Notably, RAFT [62]
employs a 4D correlation volume and estimates optical flow
through iteratively updates with a recurrent operator. More
recently, transformer-based flow estimators [21, 26, 59, 80]
achieved superior performance, showing the strong capacity
of the transformer architecture. However, pairwise optical
flow methods are not suitable for long-term tracking, as they
are not designed to handle long temporal contexts [8, 74].
Multi-frame optical flow methods [25, 28, 32, 54, 69]
extend pairwise flow by incorporating multi-frame con-
texts (typically 3-5 frames), but this remains insufficient for
tracking through long occlusions in videos spanning tens or
hundreds of frames.

Tracking any point. Recognizing the limitations of op-
tical flow, seminal work Particle Video [56] proposes to
represent video motion as a set of long-range particles
that move through time, which are optimized by enforcing
long-range appearance consistency and motion coherence
with variational techniques. However, Particle Video only
generates semi-dense tracks and cannot recover from oc-
clusion events [55]. Recently, PIPs [17] revisited this
idea by introducing a feedforward network that takes RGB
frames of a fixed temporal window (8 frames) as input and
predicts the motion for any given query point through itera-
tive updates. However, PIPs tracks points independently,
neglecting spatial context information, and will lose the
target if they stay occluded beyond the temporal window.
Several recent advancements [3, 11, 12, 42, 71, 81] in
point tracking have surfaced, addressing some of PIPs’
limitations. TAPIR [12] relaxes the fixed-length window
constraint by using a temporal depthwise convolutional
network capable of accommodating variable lengths. Co-



Figure 2. Overview of Our Pipeline. We first encode each frame into a triplane representation (a) using a triplane encoder (b). We then
initialize and iteratively update point trajectories in the 3D space using a transformer with features extracted from these triplanes as input
(c). The 3D trajectories are trained with ground truth annotations and are regularized by an as-rigid-as-possible (ARAP) constraint with
learned rigidity embedding (d). The ARAP constraint enforces that 3D distances between points with similar rigidity embeddings remain
constant over time. Here dij represents the distance between points i and j, while sij denotes the rigid similarity. Our method produces
accurate long-range motion tracks even under fast movements and severe occlusion (e).

Tracker [29] proposed to jointly track multiple points and
leverage spatial correlation between them, leading to state-
of-the-art performance.

Though significant progress has been made, these works
all compute feature correlation in the 2D image space,
losing important information about the 3D scene where the
motion actually takes place. In contrast, we lift 2D points
into 3D and perform tracking in the 3D space. The more
meaningful 3D contexts (as opposed to 2D), along with
an as-rigid-as-possible regularization, facilitate improved
handling of occlusions and enhance tracking accuracy.
Previous studies have also explored computing 2D motion
with a touch of 3D, e.g., through depth-separated layers [30,
57, 60, 77] or quasi-3D space [71]. However, distinct from
their optimization-based pipelines, we perform long-range
3D tracking in a more efficient, feedforward manner.

Scene flow. Scene flow defines a dense 3D motion field
of points in a scene. Early work estimates scene flow in
multi-view stereo settings [49, 66, 79] through variational
optimization [22]. The introduction of depth sensors
enabled more effective scene flow estimation from pairs or
sequences of RGB-D frames [16, 18, 20, 27, 52, 63, 72].
A considerable number of recent scene flow methods rely
on stereo inputs [39, 41], but many of them are tailored
specifically for self-driving scenes, lacking generalizabil-
ity to diverse non-automotive contexts. Another line of
research [7, 15, 34, 36, 45, 75] estimates 3D motion
from a pair or a sequence of point clouds. An important
prior that is often used for scene flow estimation is local

rigidity [67, 68], where pixels are grouped into rigidly
moving clusters (object or part-level), in either a soft or
hard manner. For example, RAFT-3D [63] learns rigid-
motion embeddings to softly group pixels into rigid objects.
Scene flow estimation is also often solved as a sub-task
in non-rigid reconstruction pipelines [31, 35, 43]. For ex-
ample, DynamicFusion [44] takes depth maps as input and
computes dense volumetric warp functions by interpolating
a sparse set of transformations as bases. In contrast to
prior works, we learn to predict long-range 3D trajectories
through supervised learning, providing generalization capa-
bilities for handling complex real-world motion.

3. Method
Given a monocular video as input, our method tracks
any given query pixels across the entire video. Different
from prior methods that establish correspondences solely
in the 2D space, we lift pixels to 3D using an off-the-
shelf monocular depth estimator and perform tracking in
a 3D space with richer and more spatially meaningful
3D contextual information, thereby enhancing the overall
tracking performance.

Fig. 2 presents the overview of our proposed pipeline.
We first encode the appearance and geometry information
of each frame into a triplane representation (Sec. 3.1).
Then we perform iterative prediction of trajectories in
the 3D space using these triplanes in a sliding window
fashion (Sec. 3.2). We leverage the as-rigid-as-possible
(ARAP) 3D motion prior during training to facilitate track-



ing especially in challenging scenarios of occlusion and
large motion (Sec. 3.3). Finally, we describe our training
strategy in Sec. 3.4.

3.1. Triplane Encoding of Input Video Frames

To perform tracking in the 3D space, we need to lift 2D pix-
els into 3D and construct a 3D representation that encodes
the feature for each 3D location. To this end, we propose to
use triplane features as the 3D scene representation for each
frame detailed below.

To start with, for each frame, we obtain its monocular
depth map using a pretrained monocular depth estimator,
alongside multi-scale feature maps generated by a convolu-
tional neural network (CNN). Subsequently, 2D pixels are
unprojected into a set of 3D point clouds, where each 3D
point is associated with a feature vector. This feature vector
is a concatenation of the corresponding image feature and a
positional embedding [65] of its 3D location.

While this featured point cloud captures both geometry
and appearance information, it is incomplete and only
covers visible regions (2.5D). Additionally, its irregular and
unordered nature poses challenges for effective learning.
One simple solution involves voxelizing the point cloud into
a 3D feature volume and completing it with 3D convolu-
tions. Yet, this approach is memory and computationally
intensive. To obtain 3D features densely and efficiently, we
propose to use triplane feature maps, which are obtained
by orthographically projecting and average splatting [46]
the featured point cloud onto three orthogonal 2D planes,
as illustrated in Fig. 2(b). Finally, additional convolutional
layers are applied to process and complete each feature
map. This triplane feature encoding process is applied to
each video frame. Since we do not assume access to camera
poses, each triplane is defined within the camera coordinate
frame of its respective frame.

This triplane representation is compact and enables us to
efficiently represent the 3D feature for any given 3D point
within the field of view. This process involves projecting the
point onto three feature planes, extracting its corresponding
feature vectors through bilinear interpolation, and fusing
them via simple addition.

Note that while similar concepts of triplanes are explored
in related fields [10, 48, 73], our focus here is distinct.
Rather than learning a triplane to represent the 3D scene
from scratch, we directly leverage monocular depth priors
to obtain a triplane where the primary objective is to
facilitate tracking in the 3D space, introducing a novel
perspective to the field of pixel tracking.

3.2. Iterative Trajectory Prediction

Given a set of query pixels in the query frame, Sec. 3.1 al-
lows us to obtain their 3D locations and their corresponding
triplane features. We now describe the process to estimate

their 3D trajectories across the entire video.
Following CoTracker [29], we partition the video into

overlapping windows of length Ts. In each window, we
iteratively estimate 3D trajectories for query points over
M steps using a transformer. The final 3D trajectories are
then propagated to the next window and updated, and this
process continues until the end of the video.

Iterative prediction. We now focus on the iterative pre-
diction of 3D trajectories within the first temporal window.
Given the 3D location X1 ∈ R3 of a query pixel in the
first frame, our goal is to predict its 3D corresponding
locations (or in other words, its 3D trajectory) in subsequent
frames {Xt}Ts

t=2, where t is the frame index.
Because we adopt an iterative updating strategy to esti-

mate the 3D trajectories, we further denote the prediction
at the m-th step as {Xm

t }Ts
t=2. To start with, we initialize

{X0
t }

Ts
t=2 to be all equal to X1, and then we iteratively

update the 3D trajectory using a transformer Ψ.
Specifically, for the point Xm

t at the m-th iteration, we
define its input feature Gm

t to the transformer as:

Gm
t = [γ(Xm

t ),Fm
t ,Cm

t , γ(Xm
t −X1)] ∈ RD, (1)

where γ is the positional encoding function and Fm
t is

the feature of point Xm
t . At the first iteration, F 0

t is
extracted from the triplane of frame t at X0

t . For later
iterations, Fm

t is a direct output of the transformer from the
previous iteration. Cm

t denotes correlation features, which
are computed by comparing Fm

t and local triplane features
around Xm

t at frame t. More details of correlation features
can be found in the supplementary material.

For each update, the transformer takes as input the
features for the trajectories of all query points across the
entire window. We denote this set of features at the m-th
iteration as Gm ∈ RN×Ts×D = {Gm

i,t | i = 1, ..., N ; t =
1, ..., Ts}, where i is the query point index and N is the
number of query points. Ψ then takes Gm as input and
predicts the new set of point positions and features:

Xm+1,Fm+1 = Ψ(Gm), (2)

where Xm+1 denotes the set of updated point positions, and
Fm+1 denotes the set of updated point features. New Gm+1

can then be defined according to Eq. 1, and the same process
is repeated M times to obtain the final 3D trajectories for
all query points XM = {XM

i,t}. The 2D correspondence
predictions can be computed by simply projecting {XM

i,t}
back onto the 2D image plane.

As query pixels may not have corresponding pixels at
some frames due to occlusions, we additionally predict the
visibility for each point of the 3D trajectories at the final
iteration M . Specifically, for each point XM

i,t , we employ
an MLP network that takes the feature FM

i,t as input and
predicts a visibility score vi,t.



Handling long videos. To track points across a long
video, we utilize overlapping sliding windows where each
pair of adjacent windows has half of their frames over-
lapped. Given the results from the previous window, we
initialize trajectories of the first Ts

2 frames of the current
window by copying the results of the last Ts

2 frames from
the previous window. The trajectories of the last Ts

2 frames
in the current window are initialized by copying the result
of the frame Ts

2 .

3.3. As Rigid As Possible Constraint

An advantage of tracking points in 3D is that we can enforce
an as-rigid-as-possible (ARAP) constraint, which enhances
spatial consistency and facilitates the prediction of motion
especially during occlusions.

Enforcing proper ARAP constraints requires identifying
if two points belong to the same rigid part. To this end,
at each iteration m, we additionally compute a rigidity
embedding Em

i for each trajectory by aggregating its fea-
tures {Gm

i,t}
Ts
t=1 across time. Then, the rigidity affinity smij

between any two trajectories i and j can be calculated as:

smij = sim(Em
i ,Em

j ), (3)

where sim(·, ·) is the cosine similarity measure.
By the definition of rigidity, the distances between

points that are rigidly moving together should be preserved
over time. Therefore, we formulate our ARAP loss as
follows, encouraging the distances between pairs of points
exhibiting high rigidity to remain constant over time:

Larap =
M∑

m=1

Ts∑
t=1

∑
Ωij

wmsmij ||d(Xm
i,t,X

m
j,t)− d(Xi,1,Xj,1)||1,

(4)
where Ωij is the set of all pairwise indices and d(·, ·) is
the Euclidean distance function, and wm = 0.8M−m is
the weight for the m-th step. This ARAP loss provides
gradients for learning both the 3D trajectories and the
rigidity embeddings.

Based on the affinity score between any two points,
we can perform spectral clustering [47, 70] to obtain the
segmentation of query pixels. Experiments in Sec. 4 show
that our method can generate meaningful segmentation of
rigid parts.

3.4. Training

In addition to the ARAP loss, we supervise the predicted
trajectories using ground truth 3D trajectories at each itera-
tion, which is defined as:

Ltraj =

M∑
m=1

N∑
i=1

Ts∑
t=1

wm||Xm
i,t − X̂m

i,t||1, (5)

where Xm
i,t and X̂m

i,t are the predicted and ground-truth 3D
corresponding locations, respectively, and wm is the weight
for the m-th step, identical to that in Eq. 4.

The predicted visibilities are supervised using:

Lvis =

N∑
i=1

Ts∑
t=1

CE(vi,t, v̂i,t), (6)

where vi,t and v̂i,t denote the predicted and ground-truth
visibility, respectively. CE represents the cross entropy loss.

The total loss function for training is defined as:

Ltotal = Ltraj + αLvis + βLarap, (7)

where α and β are weighting coefficients. In practice, they
are set as 10 and 0.1, respectively.

3.5. Implementation Details

We train our model on the TAP-Vid-Kubric dataset [11,
14]. Our training data contains 11,000 24-frame RGBD
sequences with full-length 3D trajectory annotations. Dur-
ing training, we use ground truth depth maps and camera
intrinsics to unproject pixels into 3D space. In cases where
the depth map and intrinsics are unavailable at inference,
we use ZoeDepth [2] to predict the metric depth map for
each video frame, and simply set the focal length to be the
same as the image width. To generate triplane feature maps,
we discretize the depth values into d = 256 bins. The
resolutions of the triplane feature maps are h × w, w × d,
h× d for XY, XZ, and YZ planes, respectively, where h,w
are the image height and width. The number of channels of
the triplane features is 128.

We train our model with eight 80GB A100 GPUs for
200k iterations. The total training time is around 6 days.
The iteration steps M and sliding window length Ts are set
to 6 and 8 respectively. In each training batch, we sample
N = 256 query points. The transformer Ψ consists of six
blocks, each comprising both spatial and temporal attention
layers. For more details, please refer to the supplementary
material.

4. Experiments
At inference, our method can operate in two different
modalities. The first modality (and the primary focus of
this paper) is long-range 2D pixel tracking. In this modality,
the input is an RGB video without known depth or camera
intrinsics, and we rely on ZoeDepth [2] to estimate the
depth maps. Due to the lack of precise depth and intrinsics
information, we only evaluate the 2D projection of the 3D
trajectories onto the image plane, i.e., 2D pixel trajectories.
When RGBD videos and camera intrinsics are available, our
method can be used in the second modality to predict long-
range 3D trajectories. We evaluate our method for both
2D and 3D tracking performance in Sec 4.1 and Sec 4.2,
respectively, and then conduct ablation studies in Sec. 4.3.



Methods
Kinetics [9] DAVIS [50] RGB-Stacking [33] Average

AJ ↑ < δavg ↑ OA ↑ AJ ↑ < δavg ↑ OA ↑ AJ ↑ < δavg ↑ OA ↑ AJ ↑ < δavg ↑ OA ↑
TAP-Net [11] 38.5 54.4 80.6 33.0 48.6 78.8 54.6 68.3 87.7 42.0 57.1 82.4

PIPs [17] 31.7 53.7 72.9 42.2 64.8 77.7 15.7 28.4 77.1 29.9 50.0 75.9

OmniMotion [71] - - 46.4 62.7 85.3 69.5 82.5 90.3 - - -
TAPIR [12] 49.6 64.2 85.0 56.2 70.0 86.5 54.2 69.8 84.4 53.3 68.0 85.3

CoTracker [29] 48.7 64.3 86.5 60.6 75.4 89.3 63.1 77.0 87.8 57.4 72.2 87.8

Ours 50.1 65.9 86.9 61.1 76.3 89.5 63.5 77.6 88.2 58.2 73.3 88.2

Table 1. 2D Tracking Results on the TAP-Vid Benchmark. We report the average jaccard (AJ), average position accuracy (<δxavg), and
occlusion accuracy (OA) on Kinetics [9], DAVIS [50] and RGB-Stacking [33] datasets.

4.1. 2D Tracking Evaluation

We conduct our evaluation on three long-range 2D
tracking benchmarks: TAP-Vid [11], BADJA [4] and
PointOdyssey [81]. Our method is compared with baseline
2D tracking methods, namely TAP-Net [11], PIPs [17],
OmniMotion [71], TAPIR [12] and CoTracker [29]. The
evaluation protocols and comparison results on each of the
benchmarks are represented below.

TAP-Vid Benchmark [11] contains a few datasets: TAP-
Vid-DAVIS [50] (30 real videos of about 34-104 frames),
TAP-Vid-Kinetics [9] (1144 real videos of 250 frames) and
RGB-Stacking [33] (50 synthetic videos of 250 frames).
Each video in the benchmark is annotated with ground
truth 2D trajectories and occlusions spanning the entire
video duration for well-distributed points. We evaluate
performance using the same metrics as the TAP-Vid bench-
mark [11]: average position accuracy (< δxavg), Average
Jaccard (AJ), and Occlusion Accuracy (OA). Please refer
to the supplement for more details. We follow the “queried
first” evaluation protocol in CoTracker [29]. Specifically,
we use the first frame as the query frame and predict the 2D
locations of query pixels from this frame in all subsequent
frames. The quantitative comparisons are reported in
Tab. 1, which shows our method consistently outperforms
all baselines except Omnimotion across all three datasets,
demonstrating the benefits of tracking in the 3D space.
Omnimotion also performs tracking in 3D and obtains the
best results on RGB-Stacking by optimizing all frames at
once, but it requires very costly test-time optimization.

BADJA [4] is a benchmark containing seven videos of
moving animals with annotated keypoints. The metrics used
in this benchmark include segment-based accuracy (segA)
and 3px accuracy (δ3px). The predicted keypoint positions
are deemed accurate when its distance from the ground truth
keypoint is less than 0.2

√
A, where A is the summation

of the area of the segmentation mask. δ3px depicts the
percentage of the correct keypoints whose distances from
their ground truth are within three pixels. As shown in
Tab. 2, our method demonstrates competitive performance
in terms of δ3px and surpasses all baseline methods by a

Methods segA ↓ δ3px ↑

TAP-Net [11] 54.4 6.3
PIPs [17] 61.9 13.5
TAPIR [12] 66.9 15.2
OmniMotion [71] 57.2 13.2
CoTracker [29] 63.6 18.0
Ours 69.2 17.1

Table 2. 2D Tracking Results on the BADJA Dataset [4].
The segment-based accuracy (segA) and 3px accuracy (δ3px) are
reported.

Methods MTE↓ <δxavg ↑ Survival↑

TAP-Net [11] 37.8 29.2 52.8
PIPs [81] 41.0 30.4 67.0
CoTracker [29] 30.5 56.2 76.1
Ours w/ ZoeDepth [2] 28.3 58.4 78.6
Ours w/ GT depth 26.6 64.1 78.0

Table 3. 2D Tracking Results on the PointOdyssey Dataset [81].
The Median Trajectory Error (MTE), average position accuracy
(<δxavg), and survival rate (Survival) are reported.

large margin in segment-based accuracy.

PointOdyssey [81] is a large-scale synthetic dataset fea-
turing diverse animated characters ranging from humans to
animals, placed within diverse 3D environments. We evalu-
ate our method on PointOdyssey’s test set which contains 12
videos with complex motion, each spanning approximately
2000 frames. We adopt the evaluation metrics proposed
in PointOdyssey [81] which are designed for evaluating
very long trajectories. These metrics include the Median
Trajectory Error (MTE), <δxavg (consistent with TAP-Vid),
and the survival rate. The survival rate is defined as the
average number of frames until tracking failure over the
video length. Tracking failure is identified when the L2
error exceeds 50 pixels at a resolution of 256 × 256. In
Tab. 3, we report results for baseline methods as well as our
method using depths from ZoeDepth [2] (default) and GT
depth annotations. Our method consistently outperforms
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Figure 3. Qualitative Comparison. For each sequence we show tracking results of CoTracker [29] and our method SpatialTracker.

the baselines across all metrics by a noticeable margin.
In particular, we demonstrate that with access to more
accurate ground truth depth, our performance can be further
enhanced. This suggests the potential of our method to
continue improving alongside advancements in monocular
depth estimation.

Qualitative Results. We present qualitative compar-
isons with CoTracker [29] on challenging videos from
DAVIS [50] and Internet footage in Fig. 3. Our method
outperforms CoTracker in handling complex human mo-
tion with self-occlusions, achieves a better understanding
of rigid groups, and can effectively track small, rapidly
moving objects even in the presence of occlusions. Please
refer to the supplementary video for more results and better
visualizations.

4.2. 3D Tracking Evaluation

Given an RGBD video (with known depth and intrinsics) as
input, our method can estimate true 3D trajectories. Since
no baseline method can directly be used for long-range
3D tracking, we construct our baselines by composing
existing methods. Our first baseline is chained RAFT-
3D [63]. RAFT-3D is designed for pairwise scene flow
estimation, so to obtain long-range scene flow, we chain its
scene flow prediction of consecutive frames. Our second
baseline is to directly lift the predicted 2D trajectories from
CoTracker [29] using the input depth maps.

We evaluate our method and baselines on the
PointOdyssey [81] dataset. We create 231 testing sequences
from the test set, each consisting of 24 frames and with
a reduced frame rate set at one-fifth of the original. We



Methods ATE3D ↓ δ0.1 ↑ δ0.2 ↑

Chained RAFT3D [63] 0.70 0.12 0.25
Lifted CoTracker [29] 0.77 0.51 0.64
Ours 0.22 0.59 0.76

Table 4. 3D Tracking Results on the PointOdyssey Dataset.
ATE3D is the average trajectory error in 3D space and δt measures
the percentage of points whose distances are within t (in meter)
from the ground truth.

Methods AJ↑ <δxavg↑ OA↑

Ours w/o ARAP 55.1 71.6 87.4

Ours w/ DPT [53] 51.4 70.7 83.3
Ours w/ MiDaS [5] 56.3 73.9 86.6
Ours w/ ZoeDepth [2] (default) 61.1 76.3 89.5

Table 5. Ablation Study on the DAVIS Dataset. The Average
Jaccard (AJ), average position accuracy (< δxavg), and Occlusion
Accuracy (OA) are reported. We evaluate the effectiveness of the
ARAP constraint and the influence of different monocular depth
estimators (ZoeDepth [2], MiDaS [5] and DPT [53]). “Ours w/
ZoeDepth” is the default model we use in our experiments.

use three evaluation metrics, namely ATE3D, δ0.1, and δ0.2.
ATE3D is the average trajectory error in 3D space. δ0.1 and
δ0.2 measure the percentage of points whose distances are
within 0.1m and 0.2m from the ground truth, respectively.

The results are shown in Tab. 4. Our method outperforms
both “Chained RAFT-3D” and “Lifted CoTracker” consis-
tently on all three metrics by a large margin. We found that
RAFT-3D, trained on FlyingThings [40], generalizes poorly
on PointOdyssey, possibly due to the fact that its dense-SE3
module is sensitive to domain gaps. In contrast, also trained
on a different dataset (Kubric), our method exhibits strong
generalization to PointOdyssey, affirming the efficacy of
our design for 3D trajectory prediction. In addition, both
baselines cannot handle occlusion and will lose track of
points once they become occluded, hurting the performance
significantly.

4.3. Ablation and Analysis

Effectiveness of ARAP loss and rigidity embedding.
We ablate the ARAP loss and report the result “Ours w/o
ARAP” on the TAP-Vid-DAVIS [11, 51] dataset in Tab. 5.
Without the ARAP loss, the performance drops substan-
tially, verifying the effectiveness of the ARAP constraint.
We additionally showcase qualitative results of the rigid part
segmentation, utilizing our learned rigidity embeddings in
Fig. 4, demonstrating their effectiveness.

Analysis on monocular depth estimators. To study the
influence of different monocular depth estimation methods
on our model, we evaluate our method with three monoc-
ular depth models: ZoeDepth [2] (default), MiDaS [5],

Figure 4. Rigid Part Segmentation. We utilize spectral clustering
on the rigidity embedding to determine rigid groups. Each color
represents a distinct rigid group.

and DPT [53]. We report the results on the TAP-Vid-
DAVIS [11, 51] dataset in Tab. 5. “Ours w/ ZoeDepth”
achieves the best results, probably due to the fact that
ZoeDepth [2] is a metric depth estimator and exhibits less
temporal inconsistency across frames compared to relative
depth estimators MiDaS [5] and DPT [53]. Furthermore,
it is noteworthy that the efficacy of our model has a pos-
itive correlation with the advancements in the underlying
monocular depth models. Please refer to the supplementary
material for additional analysis and ablations.

5. Conclusion and Discussion

In this work, we show that a properly designed 3D rep-
resentation is crucial for solving the long-standing chal-
lenge of dense and long-range motion estimation in videos.
Motion naturally occurs in 3D and tracking motion in
3D allows us to better leverage its regularity in 3D, e.g.,
the ARAP constraint. We proposed a novel framework
that estimates 3D trajectories using triplane representations
with a learnable ARAP constraint that identifies the rigid
groups in the scene and enforces rigidity within each group.
Experiments demonstrated the superior performance of our
method compared to existing baselines and its applicability
to challenging real-world scenarios.

Our current model relies on off-the-shelf monocular
depth estimators whose accuracy may affect the final track-
ing performance as shown in Tab. 5. However, we
anticipate that advancements in monocular reconstruction
will enhance the performance of motion estimation. We
expect a closer interplay between these two problems,
benefiting each other in the near future.
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